网站首页 > 文章精选 正文
- 目录
废话
1.环境配置(jupyter notebook python 3.6.5)
2.训练集准备
3.代码思路(艹图)
4.人脸识别源码
5.参考文章
6.可能遇到的问题
废话
嗯,开局说点废话,之前用stm32和esp8266改装了下宿舍门,但终究觉得没人脸识别来得舒服,所以就有了这篇文章
1.环境配置(jupyter notebook python 3.6.5)
我这里用的是python3.6,如果你想搭建一个3.6的环境又不想影响原有的,可以用小黑窗(Anaconda Prompt)搭建一个虚拟环境(虚拟环境是一个独立的空间不会影响外界,也不会受外界影响,适合应对不同版本python的需求)
如何搭建虚拟环境可以看看这篇文,简单粗暴
当你搭建好虚拟环境后,第三方库的安装也要安在虚拟环境里,那么如何切换到虚拟环境里呢
打开小黑窗 activate 虚拟环境名字就可以激活了效果如下:
看到小括号就说明已经切换到虚拟环境里了
然后就可以安装所需的第三方库了,eg.Opencv,scipy,request,dlib,安装方法如下:
1)OpenCV
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-contrib-python==3.4.2.16
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python==3.4.2.16
2)scipy
pip install scipy
3) request
pip install request
4) dlib
dlib库的安装比较麻烦,你得先找到对应版本,因为不同python版本对应不同dlib
如果你跟我一样是3.6,那装19.7就行
缺版本或找不到对应版本可以留言
2.训练集准备
这个训练集捏,是借助recognizer.train得到的.yml文件,所以精度没特别高,但是拿来玩玩门锁 还是够用,追求精度可以走深度学习
代码如下:
1)第一步准备照片(即你的人脸像),以“序号.名称”命名,例如“1.xx"这是为了方便切片和保存(即我们可以通过切片将每张照片的脸部特征,序号,名称一一对应)记得你照片的存放路径
2)第二步准备人脸数据集haarcascade_frontalface_alt2.xml,这个是opencv自带的用于检测人脸(注意是检测人脸不是识别人脸)这种做法我觉得有点像RIO ,就是我们在一张图片中匹配人像特征不是从角落开始,而是定位人脸,然后规划一个区域,在区域内进行匹配,这样节省很多时间
3)第三步,跑代码就完事了,然后你会在你指定的文件夹里面找到yml文件,这就是你的训练集
import osimport sysfrom PIL import Imageimport numpy as npimport cv2
def getImageAndLabels(path): #建两个空列表后续存储数据 facesSamples=[] ids=[] imagePaths=[os.path.join(path,f) for f in os.listdir(path)] #检测人脸 face_detector = cv2.CascadeClassifier('E:\jupyter_notebook\practice\haarcascades\haarcascade_frontalface_alt2.xml') #打印数组imagePaths print('路径:',imagePaths) #遍历列表中的图片 for imagePath in imagePaths: #打开图片,灰度 PIL_img=Image.open(imagePath).convert('L') #此时获取的是整张图片的数组 img_numpy=np.array(PIL_img,'uint8') #获取图片人脸特征,相当于rio faces = face_detector.detectMultiScale(img_numpy) #将文件名前的名字转化为ID并记录下来 str_id = os.path.split(imagePath)[1].split('.')[0] id = int(str_id) #id = os.path.split(imagePath)[1].split('.')[0] #预防检测到无面容照片 for x,y,w,h in faces: #把ID写进ids列表中 ids.append(id) #把所画的方框写进facesSamples列表中 facesSamples.append(img_numpy[y:y+h,x:x+w]) #打印脸部特征和id print('id:', id) print('fs:', facesSamples) return facesSamples,ids
if __name__ == '__main__': #图片路径 path='E:/face_dormitory/train' #获取图像数组和id标签数组和姓名 faces,ids=getImageAndLabels(path) #获取训练对象 recognizer=cv2.face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) #保存文件 recognizer.write('E:/face_dormitory/opencv/trainer/trainer_xx.yml')
3.代码思路(艹图)
4.人脸识别源码
1)引入库
import cv2import numpy as npimport osimport urllibimport urllib.requestimport hashlibfrom scipy.spatial import distance as distfrom collections import OrderedDictimport argparseimport timeimport dlib
2)加载训练集(这里shape_predictor_68_face_landmarks是用于眨眼检测的)
#加载训练数据集文件recogizer=cv2.face.LBPHFaceRecognizer_create()recogizer.read('E:/face_dormitory/opencv/trainer/trainer_xx.yml')names=[] #建个空id列表warningtime = 0predictor = dlib.shape_predictor('E:/face_dormitory/opencv/shape_predictor_68_face_landmarks.dat')
3)邮件函数(即识别出陌生人或可疑人用于发送抓拍照片的)
import smtplibfrom PIL import Imageimport email # 文件名不可以和引入的库同名from email.mime.image import MIMEImage # 图片类型邮件from email.mime.text import MIMEText # MIME 多用于邮件扩充协议from email.mime.multipart import MIMEMultipart # 创建附件类型 HOST = 'smtp.qq.com' # 调用的邮箱借借口SUBJECT = 'Warning!!!' # 设置邮件标题FROM = '1xxxxxxxxx@qq.com' # 发件人的邮箱需先设置开启smtp协议#TO = '1xxxxxxxxxxx@qq.com' # 设置收件人的邮箱(可以一次发给多个人,用逗号分隔)TO = 'xxxxxxxxxx@qq.com' # 设置收件人的邮箱(可以一次发给多个人,用逗号分隔)message = MIMEMultipart('related') # 邮件信息,内容为空 #相当于信封##related表示使用内嵌资源的形式,将邮件发送给对方 def sendmail(HOST, SUBJECT,FROM,TO,message): # ===========发送信息内容============= message_html = MIMEText('<h1 style="color:red;font-size:100px">Warning!!!</h1><img src="cid:small">', 'html', 'utf-8') message.attach(message_html) # ===========发送图片-============= message_image0 = MIMEText(open('E:/face_dormitory/unidentified/0.jpg', 'rb').read(), 'base64', 'utf-8') message_image0['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"'# 设置图片在附件当中的名字 message_image1 = MIMEText(open('E:/face_dormitory/unidentified/1.jpg', 'rb').read(), 'base64', 'utf-8') message_image1['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"'# 设置图片在附件当中的名字 message.attach(message_image0)# 添加图片文件到邮件-附件中去 message.attach(message_image1)# 添加图片文件到邮件-附件中去 ''' path='E:/face_dormitory/unidentified' imagePaths=[os.path.join(path,f) for f in os.listdir(path)] for imagePath in imagePaths: PIL_img=Image.open(imagePath,'utf-8') PIL_img['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"' message.attach(PIL_img) ''' # ===========删除缓冲图片-============= #os.remove('E:/face_dormitory/unidentified/0.jpg') #os.remove('E:/face_dormitory/unidentified/1.jpg') # ===========发送excel-附件============= #message_xlsx = MIMEText(open('email_demo.xlsx', 'rb').read(), 'base64', 'utf-8')# 将xlsx文件作为内容发送到对方的邮箱读取excel,rb形式读取,对于MIMEText()来说默认的编码形式是base64 对于二进制文件来说没有设置base64,会出现乱码 #message_xlsx['Content-Disposition'] = 'attachment;filename="email_demo_change.xlsx"'# 设置文件在附件当中的名字 #message.attach(message_xlsx)# 添加excel文件到邮件-附件中去 # ===========配置相关-============= message['From'] = FROM # 设置邮件发件人 message['TO'] = TO # 设置邮件收件人 message['Subject'] = SUBJECT # 设置邮件标题 email_client = smtplib.SMTP_SSL()# 获取传输协议 email_client.connect(HOST, '465')# 设置发送域名,端口465 result = email_client.login(FROM, 'xxxxxxx') # qq授权码 print('登录结果', result) # ===========操作============= email_client.sendmail(from_addr=FROM, to_addrs=TO.split(','), msg=message.as_string()) #发送邮件指令 email_client.close()# 关闭邮件发送客户端
写邮件函数我是借鉴这个大佬的,站在巨人肩膀上嘛,总不能什么都靠自己来
4)防照片检测(即眨眼检测)这个也可以用于疲劳检测
详见:i·bug - resources - Facial point annotations
FACIAL_LANDMARKS_68_IDXS = OrderedDict([ ("mouth", (48, 68)), ("right_eyebrow", (17, 22)), ("left_eyebrow", (22, 27)), ("right_eye", (36, 42)), ("left_eye", (42, 48)), ("nose", (27, 36)), ("jaw", (0, 17))])
def eye_aspect_ratio(eye): # 计算距离,竖直的 A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) # 计算距离,水平的 C = dist.euclidean(eye[0], eye[3]) # ear值 ear = (A + B) / (2.0 * C) return ear
def shape_to_np(shape, dtype="int"): # 创建68*2 coords = np.zeros((shape.num_parts, 2), dtype=dtype) # 遍历每一个关键点 # 得到坐标 for i in range(0, shape.num_parts): coords[i] = (shape.part(i).x, shape.part(i).y) return coords
def pervent_to_photo(): # 设置判断参数 EYE_AR_THRESH = 0.3 EYE_AR_CONSEC_FRAMES = 3 # 初始化计数器 COUNTER = 0 TOTAL = 0 # 检测与定位工具 print("loading facial landmark predictor...") detector = dlib.get_frontal_face_detector() #predictor = dlib.shape_predictor('E:/face_dormitory/opencv/shape_predictor_68_face_landmarks.dat') # 分别取两个眼睛区域 (lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"] (rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"] # 读取视频 print("starting video stream thread...") vs = cv2.VideoCapture(0) time.sleep(1.0) # 遍历每一帧 while True: # 预处理 frame = vs.read()[1] if frame is None: break (h, w) = frame.shape[:2] width=1200 r = width / float(w) dim = (width, int(h * r)) frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 rects = detector(gray, 0) # 遍历每一个检测到的人脸 for rect in rects: # 获取坐标 shape = predictor(gray, rect) shape = shape_to_np(shape) # 分别计算ear值 leftEye = shape[lStart:lEnd] rightEye = shape[rStart:rEnd] leftEAR = eye_aspect_ratio(leftEye) rightEAR = eye_aspect_ratio(rightEye) # 算一个平均的 ear = (leftEAR + rightEAR) / 2.0 # 绘制眼睛区域 leftEyeHull = cv2.convexHull(leftEye) rightEyeHull = cv2.convexHull(rightEye) cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1) cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1) # 检查是否满足阈值 if ear < EYE_AR_THRESH: COUNTER += 1 else: # 如果连续几帧都是闭眼的,总数算一次 if COUNTER >= EYE_AR_CONSEC_FRAMES: TOTAL += 1 # 重置 COUNTER = 0 # 显示 cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.imshow("Frame", frame) #眨眼两次则判断不是照片 if TOTAL >= 2: cv2.imwrite(r"E:/face_dormitory/unidentified/"+"1.jpg",frame) #抓拍 break #空格退出 if ord(' ') == cv2.waitKey(10): break #vs.release() cv2.destroyAllWindows()
5)人脸检测函数
#准备识别的图片def face_detect_demo(img): gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度 face_detector=cv2.CascadeClassifier('E:\jupyter_notebook\practice\haarcascades\haarcascade_frontalface_alt2.xml') #加入数据集 face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300)) #范围在100*100~300*300判断为脸 for x,y,w,h in face: cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2) cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1) # 人脸识别 ids, confidence = recogizer.predict(gray[y:y + h, x:x + w]) #置信评分 confidence 越大越不可信 if confidence > 50: global warningtime global num warningtime += 1 if warningtime > 100: #cv2.imwrite(r"E:/face_dormitory/unidentified/"+str(num)+".jpg",frame) #抓拍 cv2.imwrite(r"E:/face_dormitory/unidentified/"+"0.jpg",frame) #抓拍 time.sleep(0.1) sendmail(HOST=HOST, SUBJECT=SUBJECT,FROM=FROM,TO=TO,message=message) print('ddddddddddd') #num += 1 warningtime = 0 cv2.putText(img, 'unidentified', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1) else: cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1) cv2.imshow('result',img)
#取名函数,切片取名,即照片名为1.cj.jpg,取名后就为cjdef name(): #相册路径 path = 'E:/face_dormitory/train' #循环读图 imagePaths=[os.path.join(path,f) for f in os.listdir(path)] for imagePath in imagePaths: #切名字 name = str(os.path.split(imagePath)[1].split('.',2)[1]) names.append(name)
6)主函数
#防照片识别pervent_to_photo() #打开摄像头,0是本地默认,1是外用,我把本地关了把外用开着所以直接0cap=cv2.VideoCapture(0)name()while True: flag,frame=cap.read() if not flag: break face_detect_demo(frame) #空格退出 if ord(' ') == cv2.waitKey(10): breakcv2.destroyAllWindows()cap.release() ?
5.参考文章
感谢大佬1
感谢大佬2
感谢大佬3
6.可能遇到的问题
1.如果你搭建了虚拟环境且里面安装了opencv,但是再引用的时候报错没装库,看看有没有将虚拟环境导入kernel
2.如果你发现我的逻辑有问题,相信你自己,错的肯定是我,请务必怼我,毕竟有探讨才有完善,我也是个小菜鸡
3.如果出现”No module named XXX“,说明安装差库了,请跑到虚拟环境里去安装,虚拟环境是独立的,你之前安装了什么都跟虚拟环境无关
猜你喜欢
- 2025-01-01 前端智能化实践:从图片识别UI样式
- 2025-01-01 OpenCV 和 Python 识别数字的结果是怎样的呢
- 2025-01-01 HALCON_极坐标变换
- 2025-01-01 python使用fitz和opencv库提取pdf中的表格
- 2025-01-01 Fluent 多孔介质仿真(Porous Media)
- 2025-01-01 基于密度(Density-based)的聚类——核密度估计(KDE)
- 2025-01-01 机器视觉halcon学习系列---XLD的介绍和使用
- 2025-01-01 平学(26):Matlab学习之三维曲面图与常见函数(2)
- 2025-01-01 [OpenCV实战]13 OpenCV中使用Mask R-CNN进行对象检测和实例分割
- 2025-01-01 OpenCV使用分水岭算法实现图像分割
- 最近发表
- 标签列表
-
- newcoder (56)
- 字符串的长度是指 (45)
- drawcontours()参数说明 (60)
- unsignedshortint (59)
- postman并发请求 (47)
- python列表删除 (50)
- 左程云什么水平 (56)
- 计算机网络的拓扑结构是指() (45)
- 稳压管的稳压区是工作在什么区 (45)
- 编程题 (64)
- postgresql默认端口 (66)
- 数据库的概念模型独立于 (48)
- 产生系统死锁的原因可能是由于 (51)
- 数据库中只存放视图的 (62)
- 在vi中退出不保存的命令是 (53)
- 哪个命令可以将普通用户转换成超级用户 (49)
- noscript标签的作用 (48)
- 联合利华网申 (49)
- swagger和postman (46)
- 结构化程序设计主要强调 (53)
- 172.1 (57)
- apipostwebsocket (47)
- 唯品会后台 (61)
- 简历助手 (56)
- offshow (61)