后序遍历思想
二叉树后序遍历的思想是: 1) 访问左子树;2) 访问右子树;3) 访问根结点。
图1遍历的顺序为:GHDBIEFCA。
算法实现
【递归算法】
二叉树的后序遍历采用的是递归思想:
#include
#include
#define ElemType char
typedef struct BiTNode
{
ElemType data; //数据域
struct BiTNode* lchild, * rchild; //左右孩子指针
}BiTNode, * BiTree;
//构建树的函数
void CreateBiTree(BiTree* Tree)
{
*Tree = (BiTNode*)malloc(sizeof(BiTNode));
/*第一层*/
(*Tree)->data = 'A';
(*Tree)->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild = (BiTNode*)malloc(sizeof(BiTNode));
/*第二层*/
(*Tree)->lchild->data = 'B';
(*Tree)->lchild->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->lchild->rchild = NULL;
(*Tree)->rchild->data = 'C';
(*Tree)->rchild->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild->rchild = (BiTNode*)malloc(sizeof(BiTNode));
/*第三层*/
(*Tree)->lchild->lchild->data = 'D';
(*Tree)->lchild->lchild->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->lchild->lchild->rchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild->lchild->data = 'E';
(*Tree)->rchild->lchild->lchild = NULL;
(*Tree)->rchild->lchild->rchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild->rchild->data = 'F';
(*Tree)->rchild->rchild->lchild = NULL;
(*Tree)->rchild->rchild->rchild = NULL;
/*第四层*/
(*Tree)->lchild->lchild->lchild->data = 'G';
(*Tree)->lchild->lchild->lchild->lchild = NULL;
(*Tree)->lchild->lchild->lchild->rchild = NULL;
(*Tree)->lchild->lchild->rchild->data = 'H';
(*Tree)->lchild->lchild->rchild->lchild = NULL;
(*Tree)->lchild->lchild->rchild->rchild = NULL;
(*Tree)->rchild->lchild->rchild->data = 'I';
(*Tree)->rchild->lchild->rchild->lchild = NULL;
(*Tree)->rchild->lchild->rchild->rchild = NULL;
}
//模拟操作结点元素的函数,输出结点本身的数值
void DisplayElem(BiTNode* elem)
{
std::cout << elem->data << " ";
}
/*后序遍历*/
void ProOrderTraverse(BiTree T)
{
if (T)
{
ProOrderTraverse(T->lchild);
ProOrderTraverse(T->rchild);
DisplayElem(T);
}
}
/*主函数*/
int main()
{
BiTree Tree;
CreateBiTree(&Tree);
std::cout << "后序遍历" << std::endl;
ProOrderTraverse(Tree);
std::cout << std::endl;
return 0;
}
【非递归算法】
递归的实现过程是依靠栈存储结构,因此可以申请一块内存模拟递归的过程。后序非递归遍历中,访问根(子根)结点有两种情况
- 遍历完左子树,需要遍历右子树,需要从栈中访问最顶上的根(子根)结点从而得到右子树的指针。
- 遍历完右子树,需要访问根(子根)结点。
基于这个特性,我们需要区分,到底这个根结点,是访问完了左子树还是右子树,所以需要添加一个变量帮助辨认。
#include
#include
#include
#define ElemType char
typedef struct BiTNode
{
ElemType data; //数据域
struct BiTNode* lchild, * rchild; //左右孩子指针
}BiTNode, * BiTree;
//构建树的函数
void CreateBiTree(BiTree* Tree)
{
*Tree = (BiTNode*)malloc(sizeof(BiTNode));
/*第一层*/
(*Tree)->data = 'A';
(*Tree)->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild = (BiTNode*)malloc(sizeof(BiTNode));
/*第二层*/
(*Tree)->lchild->data = 'B';
(*Tree)->lchild->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->lchild->rchild = NULL;
(*Tree)->rchild->data = 'C';
(*Tree)->rchild->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild->rchild = (BiTNode*)malloc(sizeof(BiTNode));
/*第三层*/
(*Tree)->lchild->lchild->data = 'D';
(*Tree)->lchild->lchild->lchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->lchild->lchild->rchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild->lchild->data = 'E';
(*Tree)->rchild->lchild->lchild = NULL;
(*Tree)->rchild->lchild->rchild = (BiTNode*)malloc(sizeof(BiTNode));
(*Tree)->rchild->rchild->data = 'F';
(*Tree)->rchild->rchild->lchild = NULL;
(*Tree)->rchild->rchild->rchild = NULL;
/*第四层*/
(*Tree)->lchild->lchild->lchild->data = 'G';
(*Tree)->lchild->lchild->lchild->lchild = NULL;
(*Tree)->lchild->lchild->lchild->rchild = NULL;
(*Tree)->lchild->lchild->rchild->data = 'H';
(*Tree)->lchild->lchild->rchild->lchild = NULL;
(*Tree)->lchild->lchild->rchild->rchild = NULL;
(*Tree)->rchild->lchild->rchild->data = 'I';
(*Tree)->rchild->lchild->rchild->lchild = NULL;
(*Tree)->rchild->lchild->rchild->rchild = NULL;
}
//模拟操作结点元素的函数,输出结点本身的数值
void DisplayElem(BiTNode* elem)
{
std::cout << elem->data << " ";
}
/*后序遍历*/
void ProOrderTraverse(BiTree T)
{
std::stack sta;
BiTNode* top = T;
BiTNode* vis = nullptr;/*临时变量,记录上一个访问到的结点,因为从右边访问根结点,
必定是右子树已经遍历结束,此时上一个访问的结点必定是右子树的根结点*/
while (top || !sta.empty())
{
if (top)
{
sta.push(top);
top = top->lchild;
}
else
{
top = sta.top();//只读取根结点,不对栈内结点进行操作
if (top->rchild && top->rchild != vis)//没有对右子树进行操作过
{
top = top->rchild;
sta.push(top);
top = top->lchild;
}
else
{
sta.pop();
DisplayElem(top);//对top进行访问,可以进行打印等操作
vis = top;//记录当前访问的是p结点
top = nullptr;//把p置空,进入下一次循环,直到栈内无元素,且p为空时遍历完成
}
}
}
}
/*主函数*/
int main()
{
BiTree Tree;
CreateBiTree(&Tree);
std::cout << "后序遍历" << std::endl;
ProOrderTraverse(Tree);
std::cout << std::endl;
return 0;
}
完整代码
GitHub: https://github.com/MrYuxiangZhu/DataStructure/tree/master/06.%20Tree