网站首页 > 文章精选 正文
# 官网地址
Bash
https://docs.ultralytics.com/usage/cli/
https://kkgithub.com/ultralytics/ultralytics/blob/main/README.zh-CN.md # github
安装 YOLO
Bash
#pip 安装YOLO (推荐)
pip install ultralytics
CLI 使用
1、语法
yolo TASK MODE ARGS
#通过 yolo help 查看更加详细的参数
TASK (optional) is one of {'segment', 'detect', 'classify', 'obb', 'pose'}
MODE (required) is one of {'benchmark', 'predict', 'track', 'export', 'val', 'train'}
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
#示例:
yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
2、Supported Tasks and Modes
YOLO11 builds upon the versatile model range introduced in YOLOv8, offering enhanced support across various computer vision tasks:
Model | Filenames | Task | Inference | Validation | Training | Export |
YOLO11 | yolo11n.pt yolo11s.pt yolo11m.pt yolo11l.pt yolo11x.pt | Detection | ? | ? | ? | ? |
YOLO11-seg | yolo11n-seg.pt yolo11s-seg.pt yolo11m-seg.pt yolo11l-seg.pt yolo11x-seg.pt | Instance Segmentation | ? | ? | ? | ? |
YOLO11-pose | yolo11n-pose.pt yolo11s-pose.pt yolo11m-pose.pt yolo11l-pose.pt yolo11x-pose.pt | Pose/Keypoints | ? | ? | ? | ? |
YOLO11-obb | yolo11n-obb.pt yolo11s-obb.pt yolo11m-obb.pt yolo11l-obb.pt yolo11x-obb.pt | Oriented Detection | ? | ? | ? | ? |
YOLO11-cls | yolo11n-cls.pt yolo11s-cls.pt yolo11m-cls.pt yolo11l-cls.pt yolo11x-cls.pt | Classification | ? | ? | ? | ? |
3、入门示例
cd /home/bbx/software/yolo
yolo predict model=yolo11n.pt source='https://kkgithub.com/ultralytics/assets/releases/download/v0.0.0/bus.jpg'
#注:如果模型无法下载, 请手工下载后放在 /home/bbx/software/yolo/modles 目录内或者将 “/home/bbx/.local/lib/python3.8/site-packages/ultralytics/utils/downloads.py” 中github 地址修改为kkgithub
#如果是手工下载的模型,请执行
yolo predict model=./modles/yolo11n.pt source='https://kkgithub.com/ultralytics/assets/releases/download/v0.0.0/bus.jpg'
4、模型训练
cd /home/bbx/software/yolo
yolo detect train data=coco.yaml model=./modles/yolo11n.pt epochs=100 imgsz=640
# coco.yaml 文件内容如下
# Ultralytics YOLO <d83d><de80>, AGPL-3.0 license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8 ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ./detect # dataset root dir
train: images/train # train images (relative to 'path')
val: images/val # val images (relative to 'path')
test: # test images (optional)
# Classes
names:
0: seal
5、模型格式转换--需要时转换
cd /home/bbx/software/yolo
yolo export model= ./runs/detect/train/weights/best.pt format=onnx # 导出的模型存放于 /home/bbx/software/yolo/runs/detect/train/weights 目录下
6、模型推理
- 推理相关的官方文档
https://docs.ultralytics.com/modes/predict/
- 命令行推理
yolo detect predict model=/home/bbx/software/yolo/dataset/runs/detect/train2/weights/best.pt source='/home/bbx/software/jetson-inference/python/training/detection/ssd/data/hg2/test/*.jpg'
- python 脚本推理
from ultralytics import YOLO
# Load Yolo model
model = YOLO("/home/bbx/software/yolo/dataset/runs/detect/train2/weights/best.pt")
# run inference
results = model("/home/bbx/software/jetson-inference/python/training/detection/ssd/data/hg2/test/*.jpg",save=True ,show=False ,show_conf=True, stream=True)
#view results
for r in results:
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print(r.boxes.conf) # 置信度
print(r.boxes.cls) # 分类ID
print(r.to_json())
print(r.names) #分类名称
猜你喜欢
- 2025-01-08 这个标星 1.2k+ 的 GUI 引擎竟然支持跨平台开发
- 2025-01-08 “没有 10-15 年,一门新编程语言很难成功”
- 2025-01-08 基础知识详解:Python any()函数的使用方法(含示例代码)
- 2025-01-08 Caddy简单使用
- 2025-01-08 如何建立一个高效的IT支持流程
- 2025-01-08 从零开发——微前端框架实践
- 2025-01-08 Rust 治好了我的精神内耗
- 2025-01-08 mongo数据库管理员运维笔记(一)
- 2025-01-08 深入理解JS:var、let、const的异同
- 2025-01-08 如何写出安全的、基本功能完善的Bash脚本
- 04-28内网IP与外网IP
- 04-28打开文档提示“office你的许可证不是正版”该怎么办?
- 04-28腾讯云国际站:如何通过腾讯云服务器搭建私有网络?
- 04-28今天我们聊聊什么是ip地址,什么又是公网和私网
- 04-28内网测速平台
- 04-28什么是IP地址,IP地址详解
- 04-28熟悉电脑地址,快速配置上网
- 04-28外网利用ssh隧道访问内网
- 最近发表
- 标签列表
-
- newcoder (56)
- 字符串的长度是指 (45)
- drawcontours()参数说明 (60)
- unsignedshortint (59)
- postman并发请求 (47)
- python列表删除 (50)
- 左程云什么水平 (56)
- 计算机网络的拓扑结构是指() (45)
- 稳压管的稳压区是工作在什么区 (45)
- 编程题 (64)
- postgresql默认端口 (66)
- 数据库的概念模型独立于 (48)
- 产生系统死锁的原因可能是由于 (51)
- 数据库中只存放视图的 (62)
- 在vi中退出不保存的命令是 (53)
- 哪个命令可以将普通用户转换成超级用户 (49)
- noscript标签的作用 (48)
- 联合利华网申 (49)
- swagger和postman (46)
- 结构化程序设计主要强调 (53)
- 172.1 (57)
- apipostwebsocket (47)
- 唯品会后台 (61)
- 简历助手 (56)
- offshow (61)